Trajectory Frame#
This page gives an overview of all public TrajFrame methods.
|
Create a TrajFrame from Lagrangian trajectories stored in either a polars DataFrame or LazyFrame or an xarray DataSet. |
- class lt_toolbox.TrajFrame(source: DataFrame | LazyFrame | Dataset, condense: bool = False, rename_cols: dict | None = None, summary_source: Dataset | None = None)[source]
Create a TrajFrame from Lagrangian trajectories stored in either a polars DataFrame or LazyFrame or an xarray DataSet.
- Parameters:
source (DataFrame | LazyFrame | DataSet) – Lagrangian trajectories to be stored in TrajFrame. Trajectories specified in eager or lazy tabular data formats can be stored in long-format or condensed formats. Trajectories specified in an xarray DataSet will be transformed to a condensed DataFrame before TrajFrame creation.
condense (bool, default: False) – Transform DataFrame or LazyFrame from long-format to condensed format where data is stored in list columns.
rename_cols (dict, default: None) – Rename columns variables using key value pairs that map from current to new column names.
summary_source (DataSet, default: None) – DataSet storing summary statistics in the form of n-dimensional DataArrays generated from Lagrangian trajectory data contained in the TrajFrame.
- Returns:
Complete trajectories, including all column variables contained in .data attribute. Summary statistics stored as n-dimensional arrays in .summary_data.
- Return type:
TrajFrame
Examples
Creating TrajFrame, trajectories, with example_trajectories.csv file in eager mode.
>>> filename = 'example_trajectories.csv' >>> data = pl.read_csv(filename) >>> trajectories = TrajFrame(source=data)
Creating TrajFrame, trajectories, with multiple parquet files in lazy mode.
>>> filenames = [ 'example_trajectories1.parquet', 'example_trajectories2.parquet'] >>> data = pl.concat([pl.scan_csv(file) for file in filenames]) >>> trajectories = TrajFrame(source=data)
Creating TrajFrame, trajectories, from a .zarr file with dimensions (traj x obs). The water parcel IDs must be stored in a 2-dimensional array, trajectory. When creating a TrajFrame from a DataSet, condense is defined as True by default.
>>> filename = 'example_trajectories.zarr' >>> dataset = xr.open_zarr(filename, chunks=None) >>> trajectories = TrajFrame(source=dataset, condense=True)
- __init__(source: DataFrame | LazyFrame | Dataset, condense: bool = False, rename_cols: dict | None = None, summary_source: Dataset | None = None)[source]